

Oscillator JTP32CS(V) · (VC)TCXO

Conflict

precision temperature compensa	ed crystal oscillator, 3.2 x 2.5 mm
--------------------------------	-------------------------------------

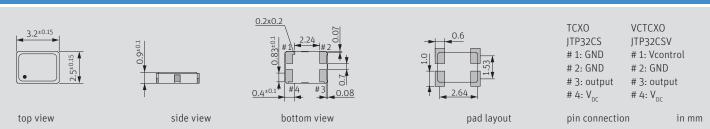
- frequency stability ±0.28 ppm available

- temperature range up to -40 °C ~ +85 °C
- JTP32CSV with frequency tuning option
- for a Stratum 3 compliant version refer to JTS32CS(V)

GENERAL DATA				
ТҮРЕ		JTP32CS / JTP32CSV (clipped sine output)		
frequency range		9.60 ~ 50.0 MHz (see developed frequ.)		
frequency	at +25 °C (*1)	± 1.0 ppm max.		
tolerance / stability	after 2x reflow (*2)	± 0.5 ppm max.		
Stubitity	temperature (*3)	see table 1		
	supply voltage (*4)	\pm 0.1 ppm max. (at $V_{DC} \pm 5\%$)		
	load change (*5)	± 0.1 ppm max. (at nom load ± 5%)		
	aging first year (*6)	± 1.0 ppm max. (at +25 °C)		
	aging per day (*7)	± 0.02 ppm max.		
	short term (ADEV)	0.2 ppb max. / 0.1 ppb typ. with τ = 1 sec		
current cons	sumption max.	3.0 mA max.		
supply volta	age V _{DC}	1.8V / 2.5V / 2.8V / 3.0V / 3.3V (all ± 5%)		
tempera-	operating	see table 1		
ture	operable	-40 °C ~ +85 °C		
	storage	-55 °C ~ +105 °C		
output	nominal load	10 kΩ // 10 pF		
	level min.	0.6 Vpp (clipped sine)		
start-up time max.		3.0 ms		
$V_{\rm c}$ frequ. tuning range JTP32CSV		see examples in table 2 (ask for options)		
$V_{\rm c}$ frequ. tuning voltage JTP32CSV		see examples in table 3 (ask for options)		
input imped	dance of V _c min.	100 kΩ		
V _c frequ. tui	ning linearity max.	10%		

TABLE 1: FREQUENCY STABILITY CODE						
frequency stabili temperature cod		B ± 2.0 ppm	D ± 1.0 ppm	E ± 0.5 ppm	F* ± 0.28 ppm	
-20 °C ~ +70 °C	В	0	0	0	0	
-30 °C ~ +75 °C	G	0	0	0	0	
-40 °C ~ +85 °C	K	0	0	0	0	

O available


frequency stability option F can be ordered as Stratum 3 compliant version, see separate JTS32CS(V) datasheet

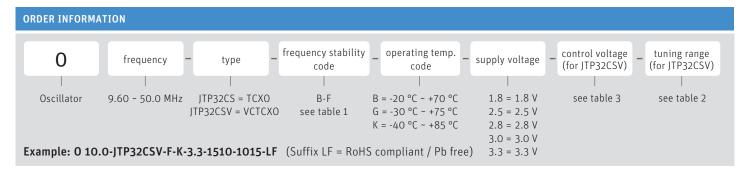

TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD						
$\rm V_{\rm c}$ frequency tuning range of JTP32CSV	code	minimal	maximal			
	0510	± 5.0 ppm	± 10.0 ppm			
table shows examples, ask for more options	0813	± 8.0 ppm	± 13.0 ppm			
	1015	± 10.0 ppm	± 15.0 ppm			
	05X0	± 5.0 ppm	undefined			

TABLE 3: VC CODING METHOD (EXAMPLES)					
V _c center voltage and	code	center of V _c	range of V _c		
$V_{\rm c}$ range	1515	1.5 V	± 1.5 V	1.5 V \pm 1.5 V at V _{DC} = 3.0 V & 3.3 V	
	1510	1.5 V	± 1.0 V	1.5 V \pm 1.0 V at V _{DC} = 2.5 V \sim 3.3 V	
	1414	1.4 V	± 1.4 V	1.4 V \pm 1.4 V at V _{DC} \geq 2.8 V	
	1410	1.4 V	± 1.0 V	1.4 V \pm 1.0 V at V _{DC} = 2.5 V & 2.8 V	
	0909	0.9 V	± 0.9 V	$0.9 \text{ V} \pm 0.9 \text{ V}$ at $V_{DC} = 1.8 \text{ V}$	

For (*1) ~ (*7) please refer to definitions shown on the 2nd page of this datasheet

DIMENSIONS

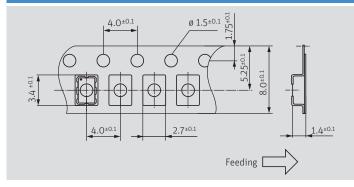
Oscillator JTP32CS(V) · Precision TCXO & VCTCXO

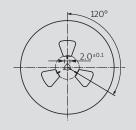
PHASE NOISE INFORMATION					
phase noise at fO 10.0 MHz, V _{DC} = 3.3 V @ 25 °C	at 10 Hz	-90 dBc/Hz typ.			
	at 100 Hz	-120 dBc/Hz typ.			
	at 1 KHz	-140 dBc/Hz typ.			
	at 10 KHz	-145 dBc/Hz typ.			
	at 100 KHz	-148 dBc/Hz typ.			

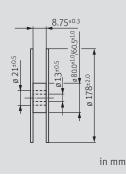
DEVELOPED FREQUENCIES						
all frequencies in MHz:	10.0	12.80	16.320	16.3840	19.20	
	19.440	20.0	25.0	26.0	30.720	
	32.0	38.40	40.0	48.0	50.0	

PACKAGING NOTE

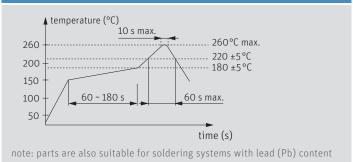
- non-multiple packing units are only supplied taped / bulk
- moisture sensitivity: MSL1


NOTE


- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of 10μ F closely to the supply voltage pins
- a separate voltage supply rail ensures best phase noise
- keep digital or high frequency signals as far away from V_c pin as possible


DEFINITIONS

- *1: Measured frequency observed with T_A =+25°C and C_1 =15pF, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with T_A =+25 °C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- *3: T_A varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} , is varied by \pm 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *5: Frequency variation if the load is varied by \pm 5% of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A =+25 °C, at nominal V_{DC} , nominal center V_{C} (if applicable), nominal load and after 1h of continuous operation.


TAPING SPECIFICATION

REFLOW SOLDERING PROFILE

MARKING

frequency / internal code (optional) dot / D / date code (YWW)

date code: one digit for year and two digits for week

2: 2022 3: 2023 4: 2024 5: 2025 6: 2026 7: 2027

