

Oscillator JTP75HC(V) · (VC)TCXO

- precision temperature compensated crystal oscillator, 7.0 x 5.0 mm

- frequency stability of \pm 50 ppb available

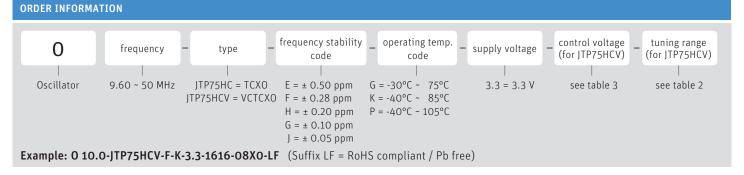
- temperature range up to -40°C ~ +105°C
- JTP75HCV with frequency tuning option

for a Stratum 3 compliant version refer to JTS75HC(V	V)
--	----

GENERAL DATA					
TYPE		JTP75HC / JTP75HCV (HCMOS output)			
frequency range		9.60 ~ 50.0 MHz (see developed frequ.)			
frequency tolerance / stability	at +25 °C (*1)	± 1.0 ppm max.			
	after 2x reflow (*2)	± 0.5 ppm max.			
Stubility	temperature (*3)	see table 1			
	supply voltage (*4)	\pm 0.1 ppm max. (at V _{DC} \pm 5%)			
	load change (*5)	\pm 0.1 ppm max. (at nom load \pm 5%)			
	aging first year (*6)	\pm 1.0 ppm max. (at +25 °C)			
	aging per day (*7)	± 10.0 ppb max.			
	short term (ADEV)	0.2 ppb max. / 0.1 ppb typ. with τ = 1 sec			
current consumption max.		10.0 mA			
supply volta	age V _{DC}	3.3V (all ± 5%)			
tempera-	operating	see table 1			
ture	operable	-40 °C ~ +105 °C			
	storage	-55 °C ~ +105 °C			
output	rise/fall time max.	8ns (10% <-> 90% of VDC)			
	nominal load	15 pF			
	low level max.	0.4V			
	high level min.	V _{DC} - 0.4V			
start-up tim	ne max.	3.0 ms			
V _c frequ. tu	ning range JTP75HCV	examples in table 2 (ask for more options)			
V _c frequ. tur	ning voltage JTP75HCV	examples in table 3 (ask for more options)			

For (*1) ~ (*7) please refer to definitions shown on the 2nd page of this datashee	t
--	---

TABLE 1: FREQUENCY STABILITY CODE								
frequency stability temperature code		E ± 0.5 ppm	F*1 ± 0.28 ppm	H*1 ± 0.20 ppm	G* ¹ ± 0.10 ppm	J*1 ± 0.05 ppm		
-30 °C ~ +75 °C	G	0	0	0	0	0		
-40 °C ~ +85 °C	K	0	0	0	0	0		
-40 °C ~ +105 °C	Р	0	0	0	0	0		


O available

^{*1} frequency stability options F / H / G and J can be ordered as Stratum 3 compliant versions, see separate JTS75HC(V) datasheet

TABLE 2: VC DEPENDENT FREQUENCY TUNING RANGE CODING METHOD								
V _c frequency tuning range	code	minimal	maximal					
of JTP75HCV	05X0	± 5.0 ppm	undefined					
table shows examples,	08X0	± 8.0 ppm	undefined					
ask for more options	0510	± 5.0 ppm	± 10.0 ppm					
	0812	± 8.0 ppm	± 12.0 ppm					

TABLE 3: VC CODING METHOD (EXAMPLES)						
V _c center voltage and	code	center of V _c	range of V _c			
V _c range	1616	1.65 V	± 1.65 V	1.65 V	$\pm 1.65 \text{ V} \text{ at V}_{DC} = 3.3 \text{ V}$	
	1610	1.65 V	± 1.00 V	1.65 V	\pm 1.00 V at V _{DC} = 3.3 V	
	1515	1.50 V	± 1.50 V	1.50 V	± 1.50 V at V _{DC} = 3.3 V	
	1510	1.50 V	± 1.00 V	1.50 V	± 1.00 V at V _{DC} = 3.3 V	
V _c	input impedance of $V_{\rm c}$ min.			100 k0hm		
properties	V _c frequency tuning linearity max.			10 %		

DIMENSIONS					
7.0±0.2 max. # 4 # 3	2.2 ±0.2	5.08±0.1 1.0±0.1 0.00	1.8 ±0.1	TCXO JTP75HC N1, N2, N3, N4: NC # 1: NC # 2: GND # 3: output # 4: V _{CC}	VCTCXO JTP75HCV N1, N2, N3, N4: NC # 1: V _c # 2: GND # 3: output # 4: V _{cc}
top view	side view	bottom view	pad layout	pin connection	in mm

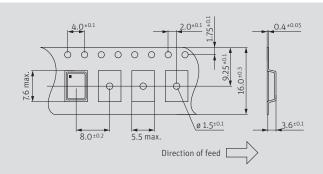
Oscillator JTP75HC(V) · Precision TCXO & VCTCXO

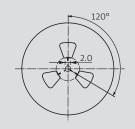
PHASE NOISE INFORMATION						
phase noise at f0 19.2 MHz, $V_{DC} = 3.3 \text{ V}$ @ +25 °C	at 10 Hz	-93 dBc/Hz typ.				
	at 100 Hz	-120 dBc/Hz typ.				
	at 1 KHz	-145 dBc/Hz typ.				
	at 10 KHz	-157 dBc/Hz typ.				
	at 100 KHz	-159 dBc/Hz typ.				

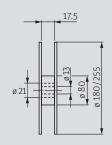
DEVELOPED FREQUENCIES							
all frequencies in MHz:	9.60	10.0	12.80	13.0	16.3840		
	18.4320	19.20	19.440	20.0	25.0		
	26.0	30.720	38.880	40.0	50.0		

NOTE

- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of $10\mu F$ closely to the supply voltage pins
- a separate voltage supply rail ensures best phase noise
- keep digital or high frequency signals as far away from V_c pin as possible

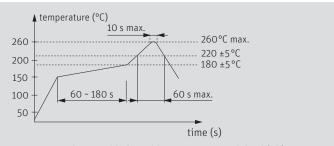

PACKAGING NOTE


- non-multiple packing units are only supplied taped / bulk
- moisture sensitivity: MSL2


DEFINITIONS

- *1: Measured frequency observed with T_A =+25°C and C_1 =15pF, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with T_A =+25 °C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- *3: T_A varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by \pm 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *5: Frequency variation if the load is varied by ± 5% of nominal load, frequency variation is normalized to frequency observed at nominal V_{DC}, nominal center V_C (if applicable), T_s=+25 °C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A =+25 °C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 1h of continuous operation.

TAPING SPECIFICATION



in mm

REFLOW SOLDERING PROFILE

note: parts are also suitable for soldering systems with lead (Pb) content

MARKING

internal code (optional) / frequency dot / internal code (optional) / date code (WWYY)

date code: two digits for week and two digits for year

