

Oscillator JTS32CS(V) · (VC)TCXO

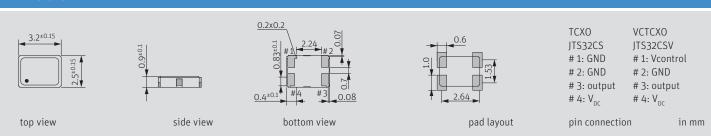
- temp. compensated crystal oscillator, 3.2 x 2.5 mm
- low jitter Stratum 3 compliant TCXO / VCTCXO
- temperature range up to -40 °C ~ +85 °C
- uning option

Conflict

J15:	32C	5 V V	vith	freq	uency	tı
ask	for	cus	tom	ized	optio	ns

GENERAL DATA					
TYPE		JTS32CS / JTS32CSV (clipped sine output)			
frequency range		9.60 ~ 50.0 MHz (see table 4 on next page)			
frequency	at +25 °C (*1)	± 1.0 ppm max.			
tolerance / stability	after 2x reflow (*2)	± 0.5 ppm max.			
Stubility	temperature (*3)	see table 1			
	supply voltage (*4)	\pm 0.1 ppm max. (at $V_{DC} \pm 5\%$)			
	load change (*5)	± 0.1 ppm max. (at nom load ± 5%)			
	aging first year (*6)	± 1.0 ppm max. (at +25 °C)			
	aging per day (*7)	± 0.02 ppm max.			
	short term (ADEV)	0.2 ppb max. / 0.1 ppb typ. with τ = 1 sec			
holdover sta	ability (*8)	± 0.37 ppm max.			
free run frequency stability (*9)		± 4.6 ppm max.			
current con:	sumption max.	3.0 mA max.			
supply volta	age VD _c	1.8V / 2.5V / 2.8V / 3.0V / 3.3V (all ± 5%)			
tempera-	operating	see table 1			
ture	operable	-40 °C ~ +85 °C			
	storage	-55 °C ~ +105 °C			
output	nominal load	10 kΩ // 10 pF			
	level min.	0.6 Vpp (clipped sine)			
start-up time max.		3.0 ms			
V _c frequ. tui	ning range JTS32CSV	see examples in table 2 (ask for options)			
V _c frequ. tur	ning voltage JTS32CSV	see examples in table 3 (ask for options)			

For (*1) ~ (*9) please refer to definitions shown on the 2nd page of this datashed	et .
--	------


TABLE 1: FREQUENCY STABILITY CODE						
frequency stability temperature code		F ± 0.28 ppm				
-20 °C ~ +70 °C	В	0				
-30 °C ~ +75 °C G		0				
-40 °C ~ +85 °C	K	0				

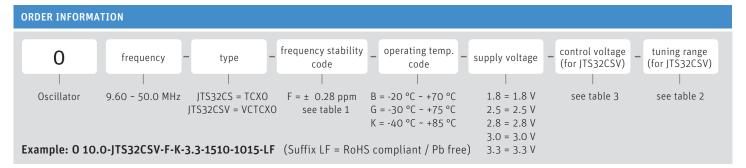

O available

TABLE 2: DEPENDENT FREQUENCY TUNING RANGE CODING METHOD							
V _c frequency tuning range	code	minimal	maximal				
of JTS32CSV	0510	± 5.0 ppm	± 10.0 ppm				
table shows examples,	0813	± 8.0 ppm	± 13.0 ppm				
ask for more options	1015	± 10.0 ppm	± 15.0 ppm				
	05X0	± 5.0 ppm	undefined				

TABLE 3: VC CODING METHOD (EXAMPLES)						
V _c center voltage and	code	center of V _c	range of V _c			
$V_{\rm c}$ range	1515	1.5 V	± 1.5 V	1.5 V \pm 1.5 V at V _{DC} = 3.0 V & 3.3 V		
	1510	1.5 V	± 1.0 V	1.5 V \pm 1.0 V at V _{DC} = 2.5 V \sim 3.3 V		
	1414	1.4 V	± 1.4 V	1.4 V \pm 1.4 V at $V_{DC} \ge$ 2.8 V		
	1410	1.4 V	± 1.0 V	1.4 V \pm 1.0 V at V _{DC} = 2.5 V & 2.8 V		
	0909	0.9 V	± 0.9 V	$0.9 \text{ V} \pm 0.9 \text{ V}$ at $\text{V}_{\text{DC}} = 1.8 \text{ V}$		
V _C	input impedance of $V_{\rm c}$ min.		V _c min.	100 kΩ		
properties	V _c frequ. tuning linearity max.		arity max.	10 %		

DIMENSIONS

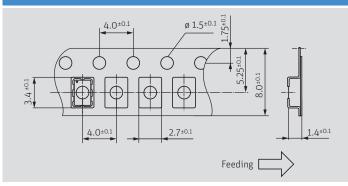
Oscillator JTS32CS(V) · Stratum 3 (VC)TCXO

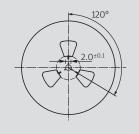
PHASE NOISE INFORMATION						
phase noise	at 10 Hz	-90 dBc/Hz typ.				
at fO 10.0 MHz,	at 100 Hz	-120 dBc/Hz typ.				
V _{DC} = 3.3 V	at 1 KHz	-140 dBc/Hz typ.				
@ 25 °C	at 10 KHz	-145 dBc/Hz typ.				
	at 100 KHz	-148 dBc/Hz typ.				

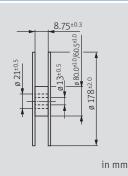
TABLE 4: DEVELOPED FREQUENCIES							
all frequencies	10.0	12.80	16.320	16.3840	19.20		
in MHz:	19.440	20.0	25.0	26.0	30.720		
	32.0	38.40	40.0	48.0	50.0		

NOTE

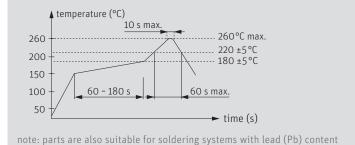
- for best supply noise rejection, connect a capacitor of 100nF and a second capacitor of $10\mu F$ closely to the supply voltage pins
- a separate voltage supply rail ensures best phase noise
- keep digital or high frequency signals as far away from V_c pin as possible


PACKAGING NOTE


- non-multiple packing units are only supplied taped / bulk
- moisture sensitivity: MSL1


DEFINITIONS

- *1: Measured frequency observed with T_A =+25°C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable) within 30 days after ex-factory. The measured frequency is referenced to the specified nominal frequency.
- *2: At specified reflow soldering profile, tested with T_A =+25 °C and C_L =15pF, at nominal V_{DC} and nominal center V_C (if applicable). At least 4 hours of static placement at room temperature is necessary after completion of 2 times reflow.
- *3: T_A varied in the specified operating temperature range, frequency variation is normalized to the middle point of whole frequency excursion, at nominal V_{DC} and nominal center V_C (if applicable), and at nominal output load, temperature variable speed less than 2°C per minute.
- *4: Frequency variation if V_{DC} is varied by ± 5% of nominal V_{DC} , frequency variation is normalized to frequency observed at nominal V_{DC} , nominal center V_{C} (if applicable), T_{A} =+25 °C and nominal load.
- *5: Frequency variation if the load is varied by \pm 5% of nominal load, frequency variation is normalized to frequency observed at nominal V nominal center V (if applicable), T = \pm 5°C and nominal load.
- *6: The maximum 1st-year frequency deviation from the ex-factory status. $T_A = +25$ °C, at nominal V_{DC} , nominal center V_C (if applicable), $T_A = +25$ °C and nominal load. Normally, the largest frequency deviation occurs within the 1st year.
- *7: The maximum frequency deviation within 24 hours in a steady state. The initial status acquired at T_A =+25 °C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 1h of continuous operation.
- *8: The maximum frequency deviation within 24 hours including temperature variation. The initial status acquired at T_A =+25°C, at nominal V_{DC} , nominal center V_C (if applicable), nominal load and after 1h of continuous operation.
- *9: The maximum frequency deviation including stability vs. temperature, tolerance ex. factory, aging over 20 years, supply and load variation.


TAPING SPECIFICATION

REFLOW SOLDERING PROFILE

MARKING

frequency / internal code (optional) dot / D / date code (YWW)

date code: one digit for year and two digits for week

2 2022 2 2022 4 2024 5 2025 6 20

 2: 2022
 3: 2023
 4: 2024
 5: 2025
 6: 2026
 7: 2027

